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FOREWORD

The work on variasble moduli models was conducted for
the U.S. Army Engineer Waterways Experiment Station (WES)
under sponsorship of the Defense Atomic Suppert Agency (DASA)
as part of NWER Subiask SB209, "Propagation of Ground Shock

Through Earth Media".

The contract was monitored by Dr. J.S. Zelasko, Impulse
Loads Section, S>il Dynamics Branch, under the general super-
vision of Mr. J.P. Sale, Chief, Soils Division, WES,

COL Ermest D. Peixotto, CE, was the contracting officer.
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The present report extends the ccmbined variable moduli

model introducea in the previous report, Ref. [l]. This more
general model is defined, conditions are set on the various
parameters, and the model behavior in uniaxial strain,
triaxial compression and pfoportional loading tests is dis-

cussed.

The major portion of the present report deals with the
procedures used to fit the current model, including the
loading and unloading, to & rather complete set of .aboratory
data for McCormick Ranch Sand. Actually, four differert fits
are described, one of them, Uniax-Triax I, in some detail.

The theoretical and experimental results are compared and

with one fit, Uniax-Triax II, excellent agreement is found
for uniaxial strain, triaxial compression and proportionsl

loading tests.

Finally, recommendations are made concerning reloading
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in shear. User's guides and FORTRAN listings of the two

r__:" L et Al

programs, UNAX2 and PROP, used to compute uniaxial strain and

proportional loading (including triaxial compression) tests

are given in an appeadix.
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FREFACE

The objectives of the work reported kerein were to (a) evaluate the

capability of variable moduli type models, Ref. [1], to quantitatively

s gern i

match typical load-unload-relcad soil property test data obtained with

g
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different laboratory test devices, and (b) document procedures for de-

7 T

termining the model coefficients from a given set of data. This work
forms part of a broad theoretical and experimental research program being
corducted at WES under DASA NWER Subtask SB209, "Propagation of Ground
Shock Through Earth Media,™ aimed at defining, describing and evaluating
those characteristics of earth media which govern the propagation and
attenuation cf ground shock.

All laboratory data utilized for this report were furnished by WES.
a Representative uniaxial strain stress-strain relations were determined
- based on analyses of a series of tests conducted at WES in support of a
DASA-sponsored HEST test at the McCormick Ranch test site, Ref. [2]. The
; [ standard triaxial compression test data, proportional loading shear data
.j: and hydrostatic compression data were obtained from the Georgia Institute
L of Technology, under contract to WES, as part of a research study on the
behavior of soils under high pressure, Ref. [3].

The vertical deformation measurement of triaxial test specirens is

Ty e

generally considered a routine operation. Ref. (3] describes the develop-

ment and pplication of an innovative device for measuring the lateral

4T ey

deformations of cylindrical soil specimens inside the triaxial test

chamber. These additional measurements allowed for the computation
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of the conmplete strain tensor for each triaxial test. However, as
pointed out in Ref. [3], and wore recently in Ref. [4), interpretation
of these detormation measurements is still a matter of major concern and
the subject of intense additional research. Thuvs, the triaxial test
data utilized in this report, though genera’ly self-consist.:e‘nt and
assuredly of the correct order of magni+ude, cannot be considered
surgically precise. .

Finally, as pointed out by the author in Section III of this report,
there is some disagreement between the virgin loading stress-strain
relations obtained with the triaxial test device and the virgin loading
uniaxial strain relation. Considering the facts that the two types of
data were obtained with totally different objectives in mind, that two
different pieces of test apparatus were used, each located in a different
laboratory and each using specimens of different size prepared by slightly
different techniques, some data disagreement should be no surprise.
Indeed, the fact that the data agree as well as they do is considered

remarkable at WES.

Vicksburg, Mies. J. S. ZEIASKO
November 1970 Contracting Officer's Representative
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Coefficients in polynomial fits.
Young's modulus.

Stress free value of E.

Youn~'s modulus during unloading.
Mean strain.

Values of e, see Fig. (1).

Axial strain deviator.

Values of e, , see Fig. (2).
Deviatoric strain tensor.

A measure of state of stress defined
by Eq. (79).

Maxiwum previous vzlue of F.

Shear modulus.

fhaar moduli im loading, unloading,
reloading.

Constants in expressions for the shear
moduclus.

Constants in shear modulus during
proportional loading.

Second invariant of the devi;toric
stresses.

Bulk modulus.

Bulk mcdulus in loading, unloading.
Constants in expression for KLD .
Constants in expression for KUN .

Length, initial length.
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Constrained modulus,

Initial value of constrained modulus,
Constrained modulus during loading.
Number of data points.

Constant, exponent appearing in

Eqs. (76) and (81).

Pressure.

Critical pressure at which the
transition between the two expressions
for G takes place,

Values of p, see Fig. (1).

uimiting value of p in proportional
loading.

Limiting values of p in triaxial
compression, given by Egqs. (27), (28),
(34).

Stress rate ratio 63/61 in proportional
loading. A

Deviatoric stress temnsor.

Axial deviatoric stress.

Values of 8, corresponding to e; and e;*,
see Fig, (2).

Volume, initfial volume.

Measured value of a function, value of
the least squares fit at the same point.
Constants in Eq. (76).

Constants in expression for GLD .

Constants in exgression for GUN .
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Change.

Volumetric strzin,

Axial and radi;i strains.

Poisson’s ratio, initial value of
Poisson’'s ratio.

Density, initial value of the density.
Principal stresses.

Initial values of stress in proportional
loading.

Critical value of 0, in triaxial tests,

see Eq. 737).
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1 INTRODUCTION.

The advances in the design of hardened undfrground
structures have led to increased demands for accurate pre-

f dictions of ground shock effects from nuclear explosions.

f These demands, in turn, have led to the requirement of more
- realistic mathematical models of the behavior of the in situ

material, namely, highly nonlinear and hysteretic soils.

The models, ideally, should reproduce real soil behavior

Ay IO i = e

for both laboratory tests and the complex geometries of real

pres

nuclear and high explosive field events. Of course, little

ey

field data exists for nuclear events., The approach therefore,
is to make the model conform to material property data obtained
from a variety of dynamic laboratory tests and to evaluate the
model in calculations of existing high explosive field tests.

Although this does not guarantee the correct behavior in a

s nuclear event, it is the most physically meaningfui means of

!
{ obtaining confidence in code predictions.
]

‘- Up to now, all computations have been performed with

. elastic-plfstic models. The historic development of advanced

i elastic-plastic models is given in Ref. {l1]. Although, as

indicated in Ref, {1}, elastic-plastic models do reproduce

L | soll uniaxial strain test data quite well, and contain the

k measured failure envelope, they do not correctly model material
behavior approaching failure in triaxial compression tests.

: K This deficiency led to the development of the variable moduli

models in which both the bulk and shear moduli are functions of

the stress and/or strain invariants, and in which there is no

pae i

P
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explicit yield condition, The early models discussed in

Ref. [1] do give qualitative agreement with the results of

the usual laboratory tests, namely, the uniaxial strain and
triaxial compression tests; in tﬁia report, a more advanced
model is described which agrees qualitatively and quantitatively

with laboratory test data for a real soil, McCormick Ranch Sand.

In Section II, the mathematical tndel is described, as
are analytic results for the various test configurations and
allowable ranges of the material parameters. The available
laboratory data and the method used to pick parameters for
loading and unloading are discussed in Section III. 1In
Section IV, results are given for the McCormick Ranch Sand
and the question of reloading is reexamined. Finally, in

Section V, recommenrdations are given for future work.
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II MODEL DESCRIPTION.

The present math:matical model, Combined Variable
Moduli Model II, is an ext?nsion of the combined variable
moduli model described in Ref. [l]). As before, the material
is described by 1ncrenent§1 stress~strain relations

i ZGé1

3

p = 3Ké

The bulk modulus on virgin loading is retained

2
KLD = Ko + Kle + Kze

However, in order to allow for more general pressure-volume
relations in unloading, a linear expression in pressure is

used as the bulk modulus for unloading and reloading

Kon = Xou * Fyo?

The major change, however, is in the shear modulus.
Whereas the failure envelope for the combined variable
moduli model described in Ref. {1]) is a straight line
corresponding to a Prager-Drucker type yield condition,
the failure envelope of most partially saturated soils
starts as a straight line, but then flattens out and
reaches a maximum with increasing pressure. Advanced
plastic models svch as the one described in Ref. [1]
mirror this behavior with a yield condition in which Vrszq
is taken as a more general function of pressure. Here,

two different expressions are used for the shear modulus,

(1)

(2)

(3)

(4)
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For small pressure, i.e.,

pressure p

- b am

]
L 1/ 2
Gip "6 ¥ Yy It Yyp +Yyp

]
- ]/ . 2
Gon = Sou ¥ Yiu f T2 F YipP * YouP

If in Eq. (5) Yl > 0 and Y2 < 0, then GLD at constant

for p less than some critical

will increase with increasing pressure until a maximum is

reached at

If it 1s assumed that the same transition pressure P,

applies in both loading and unloading, then necessarily

Yig 1

Yoy Y2

For larger pressures, 1.e., p > P

where

0f course, at p = P, > the expressions for G

continuous,

LD

UN

iy

- 1,
6, + 7Y, V J, 5

2
G}
o 4 Y,
2
c 1N
ol 4 yz

LD

and G

UN

are

It is seen that the present model has almost

N

(8)

(9)

_(10)

(11)

(12)
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as much flexibility in unloading as in initial loading,
something not true of previous models. The special case of
jz » 0 i3 included with jz < 0 br analogy with the neutral
plastic state in plasticity. At present, the model makes no
distinction between initial loading in shear and suhsequent
reloading. The ramifications of this and an alternative

choice are discussed later.

Conditions on the Parameters.

In crder for there to be no energy generate;, during

infinitesimal stress cycles, two necessary conditions are

Kow 2 Xpp
Con 2 Cpp
During initial loading the pressure may be found in terms
of the mean strain by direct integration of Eqs. (2) and (3)
3 2 3
P = 3K°e + 2 Kle + K2e
Along the initial loading curve, by substituting Eq. (15)
into Eq. (4)
K = K + K. (3K e + 2 K e2 + K e3)
UN ol iv o 2 71 2
so that the condition KUN 2 KLD becomes
(K. -K)+ (3K, K =-X)e+ (2K, K =-K)e>+ (K, K)e> >0
ol o 10U o 1 2 "1l 2 1u2 -

A sufficient condition for the inequality Eq. (17) to be

satisfied for all positive values of e is for erch of the

(13)

(14)

(15)

(16)

(17)
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coefficients to be positive. The first and second terms

lead to

l(oU

iv

K
o

=

1

w23
[+]

K

1f l(1 < 0 and Kz > 0, the third term woul not be satisfied,

but since e is small this case need not be considered,
The conditioi on the shear moduli, Eq. (14), leads to

A
s = ]/ 2
(Goy = 60 + (g = YD Y I, + vy = ¥de + Ly = v,0p° 20

The initial shear modulus is, of course, positive, so that

Since in loading the material softeus w.th increasing ioad

?l < 0 and the second term will be positiv  /henever
Yig 7 Yy <0

so that qu > 0 is certainly possible. Using Eqs. (7) and

(8) the pressure terms in Eq. (20) reduce to
- - B~
p(Y,y - YA 2pc) >0
which being valid only for p < P, leads to
Yig > Yy > 0

Looking at the loading and unloading shear moduli for p > 1

(18)

(19)

(20)

(21)

(22)

(23)

(24)

leads again to Egqs. (21) and (22) and gives no new information.
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Uniaxial Strain Test.

As was done¢ for the simpler combined variadle moduli
model in Ref. [l], the expression fcr the constrained

4

modulus during initial loading, HLD - KL + 3 GLD , may be

D
integrated to obtain the gtress-strain curve, cl(e). in
clcsed form. The lolutioﬁ for the stress is an exponential
plus a sixth degree polynomial in e with the coefficients

in terms of the material parameters. The result is not
given here (it would take a whole page to write!) since the
program which computed the uniaxial strain test actually
used numerical integration rather than the closed form ex-
pressions. Thc other stress quantities, such as s, and 03 N

may be obtained from Ul(e) and p(e), Eq. (15). All strain

quantities are proportional to e.

Triaxial Compression Test.

In the triaxial compression test all the stress rates

are proportional and since o, = 03

]/ ! vY3 1
2 2 1 3 1 3

The shear modulus for p < P, s Eq. (5), becomes
= 2
Gp ™ 6o ¥ VP ¥ 3 Y1(p = 03) + Y87 = ¥y(p - p)(p - py) (26)

where with Y, >0, ?1 and B < 0, and (Yl + /3 ?1) <0 as in




Ref. (1]

- - 2 = s
Ly v B+ }/(Yl + /TY))° - dv,(6, - VI Y 0] <o
2y
2

27

and

(-Cy, + /3 ?1) - }[(Yl + /3 71)2 - b4y, (6 - /3 §1a3)1

P2 7v, >0

(28)

By integrating él = 51/26 = $/G with G given by Eq. (26),
the strain deviator e is obtained in closed form
P

P =P P =Py
- o G=—=7) - n (G0 30)
- dp . T an il 2

¢(p) V (v, + 3 71)2 - 4v,(6, - /3 ?103)

e, (29)

93

which is positive and finite as long as P <0 < o, <p < Py -
However, as p approaches Py the strain becomes infinite so
that v, represents the pressure at failure. The stress

difference at failure as a function of 0, may be obtained
from Eq. (28)
{o

3 -
1~ % pax ™ 7395 - 2v, [ry + /3 7)) +

+ ][(Yl + /3 71)2 - 4y,(6, - VI ¥ 0] (30)

If the limit of Eq. (30) is taken as Y, * 0, the result
corresponds to that of the simpler model in Ref. [1] where

Y, does not appear, namely,




—_ 9 o=

3(G° + Y1°3)

(01 - c,3)|ux - . NS (3D
Y, =0 Y1 1
The expression for e Eq. (29}, also reduces to that given
previously.
When 03 < p_. <p, since the expression for G changes,
one intogrates first from 0, to p, and then from P, to p.
The resulting expression for e; is
P. "~ P P. - P
tn (5—h -
3" 3~ P
e, - =
- .2 =
1[(71+-’3¥1) - 4y,(6, - /3 ¥,0,)
2
Y
171 =
. 6, - 7 Y, + /3 Y,(p - 0y
+ e in 3 (32)
Y Y
1 1°'1 =
Go -7 7; + /3 Yl(pc - 03)
for 0'3<pc<p.
Finally, when both 03 and p are greater than P,
2
Y
1'1 =
L Go-472+ﬁyl(p-a3)
e, = — 2n 3 (33)
h ¢ -1
o 4 Y,
Both Eqs. (32) and (33) become infinite when
2
1 1"
P=py=0, - —= (6 -7 ) (34)
3 3 '/EY o 4Y2
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The various expressions for e, » Egs. (29), (32) and (33),

are continuous as either p or 0, crosses p_ .

From Eq. (30) for the stress difference at failure one

obtains the intercept

3 -
(07 = 93) nax = - E?; (v, + 3 Y+
o, =0
3
- .2 i
+ V(yl + 73 Y,)" - 4,6, (35)

and the initial slope

4(0; - 93) pax 33 7,
- - -3 - - (36)
3 - 2
gy =0 }[(71 MR TR PN
of the failure envelope. One may also find the chamber
pressure °3c at which the failure envelope flattens out,
oy dwl - aS’nax . 0
do3
Y, (Y, + 2/3 y.) + 4y,C
g - 1*'1 1 2 0 (37)

3¢ 672 71 73
It should be noted that when Oy =03, Eqs. (28) and (34)
lead to P, " P3 =P, - It 1is thus seen that in the present
model there is a unique pressure P which represents the
pressure at which the failure surface flattens out, an
observed phenomenon in partially saturated sofls. The

present model is therefore a strong candidate {or representing
real soils. The actual fitting to laboratory data is

described in the next section.
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Proportional Load Teltf)

In a so-called "proportional load" test the stresses are

constrained according to the relation
vhere q is a constant. The two limiting conditions are

q=0 producing triaxial loading
(39)
q=1 producing hydrostatic loading

The constitutive relations are those of Egqs. (1) and (2),
the bulk moduli are given by Eqs. (3) and {4), and the
shear moduli by Eqs. (5), (6), (9) and (10). For pressure

reloading up to a previous peak K = K but for reloading

UN °*

of deviators G = GLD' Figures (1) and (2) show typical

paths of loading-unloading-reloading which have been con-

sidered.

(1) Solutions for the Volumetric Portion.

Initial prestressing of the system has been introduced

(o) (o)
2

1 and ©

throurh the quantities o such that the initial

pressure is

p, = 3 (0 4 20]°) (40)

and initial mean strain e  may be found from the appropriate

root of the Eq. (15) at p = P,

3 2
Kzeo + 1.5K1eo + 3K°eo - P, 0 (41)

-~
) This section contributed by A, Matthews.
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The loading portion of the volumetric curve, Fig. (1), from

o

*
p. to p 1is fully described by Eq. (15). An unloading

* *k
portion of the volumetric curve, from p to p , is described

by the integral of Eq. (2) when K“

expression is

K

y °f Eq. (4) 1s used. The

+ K

P *
e = 36' fn [ ol Lo ] + e (42)
1u KOU + Klup
for KlU ¢ 0, or
* *
e-3K1 (p -p) + e (43)
ol

*k *
for K = 0. The reload portion from p to p 1is

1v

*k
established from the same equations, except that p and

k%

* *
e replace p and e , respectively, in Eqs. (42) and (43).

*
For further reloading above p

describe the curve.

» Eq. (15) is again used to

(2) Solutions for the Deviatoric Portion.

Initial deviatoric strain, e

is considered to be

(o)
1

zero, With this condition, the deviatoric constitutive

relation, Eq. (1), which uses
integrated in closed form for

particular, for this case the

G, p 8iven by Eq. (5) may be
proportional loading. In

A
invariant J2 may be written as

3

1 1 -
VI2 = /3 S

It is therefore convenient to

in the form

q (o) (o)

rewrite the shear modulus G

(45)

[21)
N
<
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vhere, for loading
R LR L.
51 - %—:—%; Iy Y.+, } (46)
G, = Y, )
while, for unloading
| G, = 6,y * ;E;i%% (qoi°) - o§°)) \
6 = 'iﬁ?{ 3Vt Y b
Sz = Yoy )

Therefore, for p < P, the integral of combined Eqs. (1) and

- - 1 ,-2 -
1- 2G2p + Gl - Gl -4 °G2
- ___Slli___ﬂl in
1 1 = = E i =~ —
€] - 485, 2G,p + 8, +‘\/c1 = loGoGz
2G,p + G, + 52
2%o 1 1 ) (48)
= & -1 /-2 '
2G2p° + Gl - Gl

providing 52 $ 0. If G, = 0, then

(45) 1s

(2]}

C!

2
G +G P
e el0) _ (1-9)/(142q) , | o 1 (49)
% G G + G,p
1 o 1%0

When q=0 (txiaxial case) Eq. (48) is equivalent to Eq. (29).

It may be noted in Eq. (48) that the deviatoric strain
increases without 1limit as p approaches a value Plim de-

termined by setting the denominator of the &n term equal
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to zero. The resulting expression defining Plim reduces
to the expression Py » Eq. (28) when q=0, [Alternatively,
setting the numerator of the lcz term equal to zero produces
an expression for a Piim of negative sign. When q=0 this
is equivaleat to Py of Eq. (27).] Note also that for g¢ol,
as in a case of hydrostatic lerading, all deviatoric strains
are zero and no Piip ©70 be computed. When 52 = 0, Plim
comes from setting the numerator of the log term equal to
zerc. In that case a valid Plin is obtained providing
RCAARRA

V3 |§1| + 2y,

q

For the initial loading portion of the deviatoric curve,

up to s: (see Fig. 2), Eq. (48) or (49) holds with eio) =0
and G quantities given by Eqs. (46). In the unloading stage
from sI to sI* Eq. (48) or (49) again holds but e{o) is
replaced by e: » Py is the pressure corresponding to sI and
the expressions for G are given by Eqs. (47). Reloading
the stresses above sI* may also be computed from the
appropriate one of the above two equations providing G

(o) e**

expressions again come from Eqs. (46), and e, 1 and

k%
P, is replaced by the pressure corresponding to 8y o

In the special case where pressure p exceeds the
critical pressure of Eq. (7) the G quantities of Eqs. (46)

and (47) must be redefinaed as

(50)
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|
o= 15 --
2 =
£ Y 3y A
= 5 1 (o) (o)
Cp = Go 4 2 T 2q ( % %2 )
= _1l-g -
6 =172 N CH
G, = 0 )
]
3 for loading, while
2 - .
Y7 3%
= . N 'y 1Y (o) _ (o)
; “o Cou 4 2 t e 2q (qol =% )
= _1- o
6, "1 25 7 Tw Y (52)
; G, =0
£ 2
i /
for unloading. In either case, since 52 = 0 the appropriate

solution equation is Eq. (49) for both locading and unloading

vhen p > P. -

I e N
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II1 MATCHING LABORATORY DATA.

The true test of any mathematical model is its ability
to match experimental data for a real material. The process
used to choose the parameters such that the model described
in the previous section fits the experimental éurves for a
real soil, namely McCormick Ranch Sand, is discussed in the
present sec.-.on. The results for various tests are compared

with typical experimental data in Section IV.

B i T

Description of the Available Experimental Data.

The laboratory data, available at the time the models

wvere fit, consisted of the following:

E {a) A series of static triaxial compression tests in which
stress difference was plotted against axial strain.

The tests were in three groups. In the first group the
load was increassd monotonically to failure. In the

1 second and third groups, the specimens were loaded to
approximately 35% and 75% of failure, respectively, then
unloaded and reloaded for several cycles and finally

loaded to failure.

{b) A composite static uniaxial strain test: A series of
both static and dynamic tests were run in which the

] axial stress and axial strain were measured. The

radial stress was not measured. A single uniaxial

strain curve was estimated by W.E.S. as the most

representative static curve for the soil with the
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(e)
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wvater content and density ty;ical of the triaxial tests.
An idea of the possible variation of the uniaxial stress-
strain curve may be seen in Fig. (3) where dynamic curves
for three different samples, as well as the W.E.S. con-

structed dynamic composite curve, are shown.

Three static hydrostats: The actual measured values of
pressure and volumetric strain and the W.E.S. constructed
average curve are shown in Fig. (4). No unloading or

reloading was measured.

Three composite atatic proportional loading tests: The
tests were run with the ratios of the radial stress to
axial stress maintained ~t 0.4, 0.6 and 0.8, respectively,
The only data available were the three composite plots

of vertical stress versus vertical strain. This data

was used only as a check.

Stress difference versus strain difference in triaxial
compression. This information was received after the
original initial loading models were already constructed.
As a result, for these models the loading data was only
used as a check, however, the unloading data was used

in constructing the unloading portion of the model.

The loading data was used in the improved models discussed

in Section 1IV.

A few comments are in order to qualify the data. The

model described in Section II is assumed to apply to a single

homogeneous isotropic (albeit nonlinzar) material., Obviously,
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soil is not homogeneous, although in a macroscopic gense it
may behave as if it were. However, different samplee have
somewnhat different properties. Thus, at least as tar as
initial loading is concerned, each test destroys the sample
so that different samples must be used in different tests.
It 1s therefore difficult in comparing results for different
test configurations to decide whether the model is in error,
or whether the data for the various tests simply apply to
different materials. An example of this uncertainty may be
s2en by comparing the initial bulk modulus Ko = 20 ksi from
Fig. (4) and the initial corstrained modulus Ho - Ko +

+ % Go < 20 ksi from Fig. (3)., The only wav the two results

could be compatible would be for Go < 0, an obvious absurdity.

Another difficulty was that the data was incomplete.
For example, in the uniaxial strain test the lateral stress
03 required to maintain zero lateral straian was not measured*).
If 04 had been measured, an independent pressure-volume

relation for the sample in the uniaxial strain configuration

could have been constructed.

Finally, it should be noted that the data came from two
different laboratories, The uniaxial strain tests were run
at W.E.S. All other tests, the hydrostats, the triaxial tests
and the proportional loading tests, were performed at Georgia

Tech under W.E.S. contract. All the Georgia Tech samples were

*)

At the time the tests were conducted such measurements
could not te made. Presently, however, they are made
as a matter of course at W.E.S.
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prepared the same way and tested on the same apparatus. The
uniaxial ssamjpies were prepared st W.E.S. in ; different

fashion ard were tested on a different type of apparatus.

A more complete qualification of the data is given by

J.S. Zelasko of W.E.S. in the preface. One more fact worth
mentioning is that the lateral deformation measurements obtained
for specimens tested in the triaxial device were part of an ex-
perimental rese-~rch and development prcject Strain computations

based on these measurements were found to be highly sensitive to

T TN L TR AT, VTS PR K T

=

b e

e T T i A

e

L

interpretation of the raw data, Ref. [3].

Hydrostat-Triaxial Fit,

The problem of choosing material parameters to fit the
data is greatly sinplified when there are tests available in
which as few of taie independent variables as possible are
varied simultaneously. The hydzostat, in which the pressure
and.volumetric strain are measured, is therefore a likely
candidate for computing the varicus K's which appear ia
Eq. (15). A series of pure shear tests in which shear strezs
and shear strain were measured and in which the pressure was
kept constant during each test would be desirable tests from
which to determine the various Y's in the shear moduli.

However, such tests were not available.

Of the availzble data, the stress difference at failure
in the various triaxial tests may be used to obtain all but
one constant in the expression for G,, , Eqs. (5) and (9).

At failure G, = 0, so that by dividing Eq. (5) by -?1 >0,
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L
one has sz as a quadratic function of pressure valid for

PSP, »or

c
G Y Y
e 2. =0 1 2 2
J2 ao + alp + azp ::— + ::— p + ::— P
Y1 Y1 Y1

The raw data of 0, and (0, - @ for each test were

3 1 3)max

i 2 C

v
transformed into p and V Ié . Aleast-squares second degree

(53)

polynomial was then fit through the resulting data.

The results for the various early trials are shown in
Table I cases 1 to 9. The second column "N" refers to the
number of tests included in the trial, while the mean
square residual is a measure of the width of the scatter
band. After the three coefficients a, the ratio of

i

a /ao = Yllco and the cut-off pressure P, € -a1/2a2 are

1
glven. Finally, the maximum value of J; for the
particular fit, the value at p = P. is given. Upon
examination of the output of the first four cases it was
evident that (a) systematic errors appeared in the fit
by trying to include both high chamber pressure (03 up to
10 ksi) and low chamber pressure tests, and (b) there

appeared to be significant differences between the noncyclic

and the cyclic tests.

It was therefore decided to base the failure fit upon
the low chamber pressure tests which were loaded straight to
failure. Although the mathematical model, described in
Section II, in which failure would occur at the same stress

level in both the cycied and uncycled triaxial tests, ran
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(to a certain extent) counter to the evidence in this regard,

no attempt was made to alter the model so that the failure
stress state would depend upon the previous load history.

Sample 16 was eliminated from further consideration since

its water content was significantly lower than that of the

other samples and its strength correspondingly higher. Tests

at lower and lower chamber pressures were eliminated (cases

5-7) until all tests included in the group failed at pressures
lower than the computed P. for the group. Case 8 which included
thirteen tests all at chamber pressures less than or equal to

0.8 ksi was this final result. The pressure at maximum shear
1

2
max

strength P, vas 1.166 ksi and the corresponding value of J
was 0.2303 ksi. As a cueck, the best constant through the
remain’ng uncycled triaxial data, case 9, was found to be

0.2323 ksi, which was within 12 of the above value.

The triaxial tests were also used to obtain an estimate
of one of the two "elastic constants" E, . This was accomplished
by extrapolating backward to zero chamber pressure the best fit
of initial eiope as a function of 03 . The value obtained
using a least squares procedure was E° = 14,14 ksi. The details
of the procedure will be discussed later when the second fit

based upon the triaxial and uniaxial test results is described.

The hydrostat, Fig. (4), was used in this early fit to
obtain the values of the various K's., The best least squares
cubic was fit through the various groups of data points. The
results are shown in Table II, The use of all poirts simul-

taneously, case 1, leads to nonsense since I(y - y*)z, rather
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kel

than the distance to the curve, is what is minimized. Al-

though there are small differences in strain at a givea (high)

i)

pressure, the large differences in pressure at a given strzin
drive the entire computation. Including the high pressures
even for a single sample is still f{naccurate for the same

reason. Terms higher than cubic should be included 1if high

f pressure data is to be taken into account. The last three
cases, cach limited to a single sample at lower pressures,
give meaningful results, The last two cases, in fact, are
very good as shown by the anean square residual. The quantity
é‘ a, should be zero for p=0 when €k * 0. For the last two
cares it is less than 2 psi and was neglected. For this
ezly fit the values of a, to a, for case 7 were used since
the sample 48 data falls between that of the other two
samples. Using e = ekk/3 and Eq. (15) the following values

were obtained:

1 K = a, = 20.6 ksi

3 o 1
K, = 682 = -3800 ksi (54)
KZ - 27a3 = 965000 ksi

Based upon the value Ko = 20,6 ksi and Eo = 14,14 ksi
obtained from the triaxial test initial slopes, the initial

Poisson's ratio and shear modulus

v_ = 0,385
° (55)

g G = 5.11 ksi
[o]

are obtained. From Go and the coefficients of the triaxial

failure fit given in Table I the various Y's are computed,
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i.e., \
Y; " -Gola° « -62.9
Y, = Y8, - 16.05 } (56)
- oy - - /
Y, Ylaz 6.8%/ksi J

The noaéi\during initial loading i3 completely defined
by the values given in Eqs. (54) to (56), The behavior of
the model in the various test configurations was computed
using specialized codea*) PROP and UNAX2 and compared with

the experimental data.

There was fairly good agreement of the computed
behavior using the present model and the measured results
of the triaxial tests. This was true of both the stress
difference versus axial strain plots and the stress difference
vergsus strain difference plots, which were received after the
model (and the later Uniaxial-Tri»xial Model I) was azlready
constructed. The results, not shown, are generally com-
parable, as far as agreement with the triaxial test experi-
mental curves is concerned, with those obtained with the
later Uniaxial-Triaxial Model I, discussed later. The model
results are too soft, especially at higher chamber pressures,
but have the proper failure stress. Of course, the present
model, which was based on the hydrostat, agrees with that

test. The results are discussed more completely in Section IV.

Unfortunately, but not unexpectedly, the present Hydrostat-

*
) Short descriptions and FORTRAN listings ~f PROP and UNAX2

are found in the Appendix.
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Triaxial model produced a stress~-strain curve in uniaxial
strain, Fig. (8), which was stiffer than the suggested
experimental curve by more than a factor of two. This 1s
partially explained by just the computed init{ial constrained
modulus Mo = 27.4 ksl versus a value certainly legs than

20 ksi suggested by Fig. (8).

Since the uniaxial strain geometry is closer to that
occurring during real events, and since W.E.S. had much
greater confidence in the uniaxial data than in the hydro-
static data, it was decided to forego the hydrostat entirely
and base a fit on the uniaxial and triaxial data exclusively.

The description of the later model follows.

Triaxial-Uniaxfal Pit.

The present approach utilized the failure envelope from
the triaxial tests to obtair the ratio of the ¥'s, the
initial slopes of the triaxial tests to estimate Eo and
the initial slope of the uniaxial test Mo as the other

"elastic" constant., Finally, K. and KZ were found by a

1
trial and error routine to obtain the properly shaped uni-
axial strain curve. This later approach was done in a more

systematic fashion since experience had already been gained

during the earlier fit.

Moreover, the data was somewhat refined from what was
used previously. For example, whereas before one had to
select which triaxial failure data to use, presently all the

test samples which had water contents and chamber pressures



TS, PIFTN I

e o oo

Pk Lol o 2 g o

’ R L T

—e 25 -=

in the appropriate range were used. In addition, the
numerical values wvere slightly more accurate., The data
used to compute the new failure envelope is shown in

Table III. The raw data, o4 and (o1 -0 » which came

3)max
from W.E.S. were used to compute p and v J; . The uppermerst
aection of the table are the uncycled tests: the middle and

bottom sections are the tests in which unloading took place

at 352 and 752 of the failure stress, respectively.

The results of the various least squares fits are given
in Table I, cases 10 to 13. The data from the uncycled tests,
case 10, contain much less scatter than the tests wi<h un-
loading as can be seen from the mean square residual. This
is also apparent from Figs. (5) and (6). In Fig. (5) the
failure fit vrsz'versus p) is plotted for the uncycled
tests together with the data points. The scatter band is
quite small; Fig. (6), on the other hand, which is the same
plot for each of the cyclic loading sets, shows a large
scatter band, particularly at higher pressure. It is noted,
however, that the maximum value of J; is approximately the
same for all the groups of tests. The model was based on
case 10, the uncycled triaxial tests because of the small
scatter band, It is seen that the coefficients a, did not

i

change drastically from the previous model, case 8.

As in the earlier Hydrostat-Triaxial fit, one of the
"elastic constants" was obtained from the initial slopes of

the triaxial tests. The results are summarized in Table IV,
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Various degree polynomial fits were tried on various segments
of the data. The emphasis was placed on the lower pressure
(03 < 400 psi) tests since the primary interest was an
accurate estimate of Eo =a . There was less scatter in

the cyclic test data than in the noncyclic tests, as
witnessed by comparing the mean square residual of cases 5
and 6 with case 4. However, since there was no reason why
the initial slope, prior to any unloading, should depend on
the subsequeunt loading history, all tests were included.

The result used, case 10, a linear fit througk all the tests
with 9, < 400 psi, was Eo = 12.2 ksi. The last column in
Table "V shows the computed value of E at o, - 100 psi. The
computed value for case 10, 30 ksi, fails within the raw data.
The measured values of initial slope together with the fit
used are plotted against chamber pressure in Fig. (7). The
computed curve is dashed above 0.4 ksi since it is not

applicable. The wide scatter in the initial slope data is

immediately apparent from Fig. (7).

The remaining "elastic" constant was the initial slope

of the uniaxial strain test Mo . This was taken as 16.5 ksi

based oca the experimental curve, Fig. (8), suggested by W.E.S.

Using the relations between the elastic constants

M=K+

wle
<«

and

_ __9Kg
K + ¢

(57)

(58)
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one may solve for G and K in terms of E and M as

colmrE) - VoM -BY(M-E)

8 (59)
and
K-M-%G (60)
With Eo = 12,2 ksi and Ho = 16.5 ksi, Eqs. (29) and (60)
give
G° = 4,69 ksi
(61)

K = 10.24 ksi
o
The initial value of Poisson's ratio vo turned out to be 0.30.

From the values of a, of the failure envelope (case 10

in Table I) and 6, the various Y's were romputed.
Y, = -Golao = -64,2

Y, = -Y;3, = 18.9 ) (62)

Y, = -Y,3, = -8.76/ksi J

The remaining two constants required to complete the

material description for initial loading, Kl and Kz , were

obtained by a trial and error scheme which was continued
until a suitable fit to the experimental uniaxial test was

obtain~d. First, with some trial value of K, held constant,

2

Kl was varied so that the influence of a change in Kl on the
stress-strain curve could be ascertained. Then Kl was
adjusted to make the computed curve agree with the experi-

mental one in the middle stress range (01 between 300 and
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500 psi). Next, with Kl held constant, K2 was varied and
adjusted to make the curves coincide in the high stress
range. With this value eof K2 » the cycle was repeated to

“fine tune" Kl . The final values

Kl = -1,250 ksi
(63)

K, = 97,000 ksi

2

were obtained in a few iterations. The computed curve is

superimposed on the experimental curve in Fig. (8).

After all the material parameters for initial loading
were determined, plots of stress difference versus strain
difference for some of the triaxial tests were received.
These plots would have enabled one to obtain Go . Yl and Y2

directly from the initial slope as a function of ¢ The

3 -
resulting shear modulus would have been significantly stiffer
than the one obtained from the failure envelope and Eo .

This 18 shown clearly in Table V where the computed values
labeled Uniax-Triax I are all smaller than the lower bounds
of the measured values. (The computed values of ZGinitial

for the improved models discussed in Section IV, also given

in Table V, agree much better with the measured values.)

It is not clear whether this discrepancy 1is in the
model formulation or in the measurement of lateral strain.
In any c.ise, this discrepancy shows up in the results which

will be discussed later.

Although the plots of stress difference versus strain

difference were not used at all in determining the present
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®
loading model ), they were the basis upon which the unloading

shear modulus parameters were datermined.

Unloading.

fhe values of the various material parameters which
describe the model in unloading were determined completely
from the cycled triaxial tests. Where there were several
unload-relcad cycles, the initial unloading segment was used,
Since values of the shear modulus were directly cbtainable

from the slopes of the o, ~- 03 versus el - 63 curves, which

1

had just become available, these slopes were the basis of the

parameters in G After G was determined, the measured

UN ° UN
slopes of the conventional triaxial plots E were used to
calculate KUN « The unloading portion of the uniaxial

strain test was used only as a check.

The slope of the stress difference versus strain
difference plots were measured at the top and bottom of the
initial unloading portion of each of the cyclic triaxial tests

* * %k *
available, i.e., at the points (s1 . el) and (s1 H Vi
respectively, in Fig. (2). The stress difference (01 - 03)

at each end and the chamber pressure 03 were noted. From

]
_(01 - 03) and 03 values of p and \/Jz were computed. The

results are summarized for the tests unloaded from 75X and

35% of failure in Tables VI and VII, respectively. At the

L
bottom the dominant effect is due to p since Jz is small.

The most self-consistent values of 2G occur in the
Bottom

*)

They were uted in formulating the improved models
Uniax-Triax Il and Hydro-Triax II discussed in Section IV.
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samples unloaded from 75% of failure with 03 of 200 and

400 psi. These values are boxed-in in Table VI. By

*
assuming VJZ is negligible and using Eq. (8) to relate

Yiv and Yop » the expression for G Eq. (6), is reduced

UN °
to one involving two independent parameters GoU and YlU .
Using the average value of p and the average value of
ZGUN for the twe boxed cases, one has two simultaneous
equations for GoU and Y1y

At the top of the unloading portion J2 is clearly
important., The most self-consistent values of ZGTOp occur
in the 35% group with 03 = 100 psi. Only samples 112 and
115 are boxed-in in Table VII, since sample 108 obviously
belongs in the 752 cyclic group even though it is labeled
35%2. 'sing the average ZGTop of samples 112 and 115, and
the known values of p ana ][;thogcther with the previously

determined values Go and Yiu (and YZU) leads to the

U

determination of ?IU .

The tentative values of the unloading shear paramet.rs

so determined are

G0U = 7.0 ksi
YlU = 51.1 ’
YZU = -23,7/ksi

Yig = 172

)
The values of the unloading shear modulus computed with the
constants, Eqs. (64), (slightly rounded off) are compared

with the range and average measured values for each case

(64)
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in Tables VIII and IX. Fairly good agreement is seen for 2cUN
at the bottom of the unloading segment, Table VIII, with only
three cases falling slightly outside the scatterband. At the
top of the unloading segment, Table IX, howaver, agreement is
found only for a single case, namely, the 35X - 100 psi group
used to compute 710 in the first place. All other computed
values of 2GUN fall significantly below the bottom of the
scatterband, indicating a choice of §IU which was far too low.

New higher values of §IU were used to compute new
caiculated values in Tables VIII and IX. Better agreement
was obtained at the top, but the higher values of §1U ilso
caused higher calculated values of 2GUN at the bottom. As a
result, slight modifications were made in GOU and Y1y (and YZU)
to improve the agreement at the bottom. The final values of

the unloading shear parameters used

GOU = 6.0 ksi \
YlU = 40.0 }
Yoy = -18.5/ksi

§1u = 500 J
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